Computing the inverse Laplace transform for rational functions vanishing at infinity
We compute explicitly the inverse Laplace transform for rational functions vanishing at infinity in the general case. We also compute explicitly convolution product for continuous elementary functions involved in the general case. We then consider algebraic structure about the Laplace transform via...
Guardado en:
Autor principal: | Sudo,Takahiro |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462014000300008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computing the Laplace transform and the convolution for more functions adjoined
por: Sudo,Takahiro
Publicado: (2015) -
Solution of partial differential equations by new double integral transform (Laplace - Sumudu transform)
por: Shams A. Ahmed, et al.
Publicado: (2021) -
Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
por: Daniela Inoan, et al.
Publicado: (2021) -
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
por: Amal khalaf Haydar, et al.
Publicado: (2021) -
Solutions and eigenvalues of Laplace's equation on bounded open sets
por: Guangchong Yang, et al.
Publicado: (2021)