Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses
This paper deals with periodic BVP for integer/fractional order differential equations with a deviated argument and integrable impulses in arbitrary Banach space X for which the impulses are not instantaneous. By utilizing fixed point theorems, we firstly establish the existence and uniqueness of th...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462015000100002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620150001000022018-10-08Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulsesChadha,AlkaPandey,Dwijendra N Deviating arguments Fixed point theorem Impulsive differential equation Periodic BVP Fractional calculus This paper deals with periodic BVP for integer/fractional order differential equations with a deviated argument and integrable impulses in arbitrary Banach space X for which the impulses are not instantaneous. By utilizing fixed point theorems, we firstly establish the existence and uniqueness of the mild solution for the integer order differential system and secondly obtain the existence results for the mild solution to the fractional order differential system. Also at the end, we present some examples to show the effectiveness of the discussed abstract theory.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.17 n.1 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100002en10.4067/S0719-06462015000100002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Deviating arguments Fixed point theorem Impulsive differential equation Periodic BVP Fractional calculus |
spellingShingle |
Deviating arguments Fixed point theorem Impulsive differential equation Periodic BVP Fractional calculus Chadha,Alka Pandey,Dwijendra N Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
description |
This paper deals with periodic BVP for integer/fractional order differential equations with a deviated argument and integrable impulses in arbitrary Banach space X for which the impulses are not instantaneous. By utilizing fixed point theorems, we firstly establish the existence and uniqueness of the mild solution for the integer order differential system and secondly obtain the existence results for the mild solution to the fractional order differential system. Also at the end, we present some examples to show the effectiveness of the discussed abstract theory. |
author |
Chadha,Alka Pandey,Dwijendra N |
author_facet |
Chadha,Alka Pandey,Dwijendra N |
author_sort |
Chadha,Alka |
title |
Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
title_short |
Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
title_full |
Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
title_fullStr |
Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
title_full_unstemmed |
Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses |
title_sort |
periodic bvp for a class of nonlinear differential equation with a deviated argument and integrable impulses |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100002 |
work_keys_str_mv |
AT chadhaalka periodicbvpforaclassofnonlineardifferentialequationwithadeviatedargumentandintegrableimpulses AT pandeydwijendran periodicbvpforaclassofnonlineardifferentialequationwithadeviatedargumentandintegrableimpulses |
_version_ |
1714206791258079232 |