Spline left fractional monotone approximation involving left fractional differential operators

Let f ? Cs (&#091;-1, 1&#093;), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on &#091;0, 1&#093;. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial spli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let f ? Cs (&#091;-1, 1&#093;), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on &#091;0, 1&#093;. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial splines with equally spaced knots of given fixed order such that L* (Qn) = 0 on &#091;0, 1&#093;. Furthermore f is approximated with rates fractionally and simultaneously by Qn in the uniform norm. This constrained fractional approximation on &#091;-1, 1&#093; is given via inequalities invoving a higher modulus of smoothness of f(s).