Spline left fractional monotone approximation involving left fractional differential operators

Let f ? Cs (&#091;-1, 1&#093;), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on &#091;0, 1&#093;. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial spli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462015000100005
record_format dspace
spelling oai:scielo:S0719-064620150001000052018-10-08Spline left fractional monotone approximation involving left fractional differential operatorsAnastassiou,George A Monotone Approximation Caputo fractional derivative fractional linear differential operator modulus of smoothness splines Let f ? Cs (&#091;-1, 1&#093;), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on &#091;0, 1&#093;. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial splines with equally spaced knots of given fixed order such that L* (Qn) = 0 on &#091;0, 1&#093;. Furthermore f is approximated with rates fractionally and simultaneously by Qn in the uniform norm. This constrained fractional approximation on &#091;-1, 1&#093; is given via inequalities invoving a higher modulus of smoothness of f(s).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.17 n.1 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005en10.4067/S0719-06462015000100005
institution Scielo Chile
collection Scielo Chile
language English
topic Monotone Approximation
Caputo fractional derivative
fractional linear differential operator
modulus of smoothness
splines
spellingShingle Monotone Approximation
Caputo fractional derivative
fractional linear differential operator
modulus of smoothness
splines
Anastassiou,George A
Spline left fractional monotone approximation involving left fractional differential operators
description Let f ? Cs (&#091;-1, 1&#093;), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on &#091;0, 1&#093;. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial splines with equally spaced knots of given fixed order such that L* (Qn) = 0 on &#091;0, 1&#093;. Furthermore f is approximated with rates fractionally and simultaneously by Qn in the uniform norm. This constrained fractional approximation on &#091;-1, 1&#093; is given via inequalities invoving a higher modulus of smoothness of f(s).
author Anastassiou,George A
author_facet Anastassiou,George A
author_sort Anastassiou,George A
title Spline left fractional monotone approximation involving left fractional differential operators
title_short Spline left fractional monotone approximation involving left fractional differential operators
title_full Spline left fractional monotone approximation involving left fractional differential operators
title_fullStr Spline left fractional monotone approximation involving left fractional differential operators
title_full_unstemmed Spline left fractional monotone approximation involving left fractional differential operators
title_sort spline left fractional monotone approximation involving left fractional differential operators
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005
work_keys_str_mv AT anastassiougeorgea splineleftfractionalmonotoneapproximationinvolvingleftfractionaldifferentialoperators
_version_ 1714206791767687168