Spline left fractional monotone approximation involving left fractional differential operators
Let f ? Cs ([-1, 1]), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on [0, 1]. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial spli...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462015000100005 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620150001000052018-10-08Spline left fractional monotone approximation involving left fractional differential operatorsAnastassiou,George A Monotone Approximation Caputo fractional derivative fractional linear differential operator modulus of smoothness splines Let f ? Cs ([-1, 1]), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on [0, 1]. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial splines with equally spaced knots of given fixed order such that L* (Qn) = 0 on [0, 1]. Furthermore f is approximated with rates fractionally and simultaneously by Qn in the uniform norm. This constrained fractional approximation on [-1, 1] is given via inequalities invoving a higher modulus of smoothness of f(s).info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.17 n.1 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005en10.4067/S0719-06462015000100005 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Monotone Approximation Caputo fractional derivative fractional linear differential operator modulus of smoothness splines |
spellingShingle |
Monotone Approximation Caputo fractional derivative fractional linear differential operator modulus of smoothness splines Anastassiou,George A Spline left fractional monotone approximation involving left fractional differential operators |
description |
Let f ? Cs ([-1, 1]), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on [0, 1]. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial splines with equally spaced knots of given fixed order such that L* (Qn) = 0 on [0, 1]. Furthermore f is approximated with rates fractionally and simultaneously by Qn in the uniform norm. This constrained fractional approximation on [-1, 1] is given via inequalities invoving a higher modulus of smoothness of f(s). |
author |
Anastassiou,George A |
author_facet |
Anastassiou,George A |
author_sort |
Anastassiou,George A |
title |
Spline left fractional monotone approximation involving left fractional differential operators |
title_short |
Spline left fractional monotone approximation involving left fractional differential operators |
title_full |
Spline left fractional monotone approximation involving left fractional differential operators |
title_fullStr |
Spline left fractional monotone approximation involving left fractional differential operators |
title_full_unstemmed |
Spline left fractional monotone approximation involving left fractional differential operators |
title_sort |
spline left fractional monotone approximation involving left fractional differential operators |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005 |
work_keys_str_mv |
AT anastassiougeorgea splineleftfractionalmonotoneapproximationinvolvingleftfractionaldifferentialoperators |
_version_ |
1714206791767687168 |