Spline left fractional monotone approximation involving left fractional differential operators
Let f ? Cs ([-1, 1]), s? N and L* be a linear left fractional differential operator such that L* (f) = 0 on [0, 1]. Then there exists a sequence Qn, n ?<img border=0 width=19 height=19 src="http:/fbpe/img/cubo/v17n1/art05-1.jpg"> of polynomial spli...
Guardado en:
Autor principal: | Anastassiou,George A |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Right General Fractional Monotone Approximation
por: Anastassiou,George A
Publicado: (2015) -
Caputo fractional Iyengar type Inequalities
por: Anastassiou,George A.
Publicado: (2019) -
Univariate right fractional Ostrowski inequalities
por: Anastassiou,George A
Publicado: (2012) -
Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods
por: Saleh,M.H, et al.
Publicado: (2013) -
Analysis of Boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative
por: Subramanian,Muthaiah, et al.
Publicado: (2020)