Continuity via -open sets
Sanabria, Rosas and Carpintero [7] introduced the notions of <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-sets and <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-closed sets using ideals...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Sanabria, Rosas and Carpintero [7] introduced the notions of <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-sets and <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-closed sets using ideals on topological spaces. Given an ideal I on a topological space ( X , <img src="http:/fbpe/img/cubo/v17n1/art06-3.jpg" alt="" width="12" height="12" />), a subsetA ⊂ X is said to be <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-closed if A = U ∩ F where U is a <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-set and F is a <img border=0 width=12 height=12 src="http:/fbpe/img/cubo/v17n1/art06-3.jpg">*-closed set. In this work we use sets that are complements of <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-closed sets, which are called <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-open, to characterize new variants of continuity namely <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-continuous, quasi-<img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg"> -continuous y <img border=0 width=16 height=19 src="http:/fbpe/img/cubo/v17n1/art06-2.jpg">-irresolute functions. |
---|