Right General Fractional Monotone Approximation

Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b&am...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g.