Right General Fractional Monotone Approximation

Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b&am...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462015000300001
record_format dspace
spelling oai:scielo:S0719-064620150003000012018-10-08Right General Fractional Monotone ApproximationAnastassiou,George A Right Fractional Monotone Approximation general right fractional derivative linear general right fractional differential operator modulus of continuity Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.17 n.3 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001en10.4067/S0719-06462015000300001
institution Scielo Chile
collection Scielo Chile
language English
topic Right Fractional Monotone Approximation
general right fractional derivative
linear general right fractional differential operator
modulus of continuity
spellingShingle Right Fractional Monotone Approximation
general right fractional derivative
linear general right fractional differential operator
modulus of continuity
Anastassiou,George A
Right General Fractional Monotone Approximation
description Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g.
author Anastassiou,George A
author_facet Anastassiou,George A
author_sort Anastassiou,George A
title Right General Fractional Monotone Approximation
title_short Right General Fractional Monotone Approximation
title_full Right General Fractional Monotone Approximation
title_fullStr Right General Fractional Monotone Approximation
title_full_unstemmed Right General Fractional Monotone Approximation
title_sort right general fractional monotone approximation
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001
work_keys_str_mv AT anastassiougeorgea rightgeneralfractionalmonotoneapproximation
_version_ 1714206793783050240