Right General Fractional Monotone Approximation
Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b&am...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462015000300001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620150003000012018-10-08Right General Fractional Monotone ApproximationAnastassiou,George A Right Fractional Monotone Approximation general right fractional derivative linear general right fractional differential operator modulus of continuity Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.17 n.3 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001en10.4067/S0719-06462015000300001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Right Fractional Monotone Approximation general right fractional derivative linear general right fractional differential operator modulus of continuity |
spellingShingle |
Right Fractional Monotone Approximation general right fractional derivative linear general right fractional differential operator modulus of continuity Anastassiou,George A Right General Fractional Monotone Approximation |
description |
Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g. |
author |
Anastassiou,George A |
author_facet |
Anastassiou,George A |
author_sort |
Anastassiou,George A |
title |
Right General Fractional Monotone Approximation |
title_short |
Right General Fractional Monotone Approximation |
title_full |
Right General Fractional Monotone Approximation |
title_fullStr |
Right General Fractional Monotone Approximation |
title_full_unstemmed |
Right General Fractional Monotone Approximation |
title_sort |
right general fractional monotone approximation |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462015000300001 |
work_keys_str_mv |
AT anastassiougeorgea rightgeneralfractionalmonotoneapproximation |
_version_ |
1714206793783050240 |