On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup

Abstract: The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, . To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the group, satisfies a curvature-dimension inequality, to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: López,Iris A.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200011
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462017000200011
record_format dspace
spelling oai:scielo:S0719-064620170002000112018-04-25On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroupLópez,Iris A. Dunkl-Ornstein-Uhlenbeck operator generalized Hermite polynomial squared field operator Meyer's multiplier theorem Dunkl-potential space fractional integral fractional derivative. Abstract: The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, . To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0≤ρ≤1. As an application of this fact, we get a version of Meyer's multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.19 n.2 20172017-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200011en10.4067/S0719-06462017000200011
institution Scielo Chile
collection Scielo Chile
language English
topic Dunkl-Ornstein-Uhlenbeck operator
generalized Hermite polynomial
squared field operator
Meyer's multiplier theorem
Dunkl-potential space
fractional integral
fractional derivative.
spellingShingle Dunkl-Ornstein-Uhlenbeck operator
generalized Hermite polynomial
squared field operator
Meyer's multiplier theorem
Dunkl-potential space
fractional integral
fractional derivative.
López,Iris A.
On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
description Abstract: The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, . To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0≤ρ≤1. As an application of this fact, we get a version of Meyer's multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.
author López,Iris A.
author_facet López,Iris A.
author_sort López,Iris A.
title On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
title_short On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
title_full On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
title_fullStr On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
title_full_unstemmed On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup
title_sort on the hypercontractive property of the dunkl-ornstein-uhlenbeck semigroup
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200011
work_keys_str_mv AT lopezirisa onthehypercontractivepropertyofthedunklornsteinuhlenbecksemigroup
_version_ 1714206796753666048