On topological symplectic dynamical systems

Abstract: This paper contributes to the study of topological symplectic dynamical systems, and hence to the extension of smooth symplectic dynamical systems. Using the positivity result of symplectic displacement energy (4), we prove that any generator of a strong symplectic isotopy uniquely determi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tchuiaga,S., Koivogui,M., Balibuno,F., Mbazumutima,V.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200049
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462017000200049
record_format dspace
spelling oai:scielo:S0719-064620170002000492018-04-25On topological symplectic dynamical systemsTchuiaga,S.Koivogui,M.Balibuno,F.Mbazumutima,V. Isotopies Diffeomorphisms Homeomorphisms Displacement energy Hofer-like norms Mass flow Riemannian metric Lefschetz type manifolds Flux geometry. Abstract: This paper contributes to the study of topological symplectic dynamical systems, and hence to the extension of smooth symplectic dynamical systems. Using the positivity result of symplectic displacement energy (4), we prove that any generator of a strong symplectic isotopy uniquely determine the latter. This yields a symplectic analogue of a result proved by Oh (12), and the converse of the main theorem found in (6). Also, tools for defining and for studying the topological symplectic dynamical systems are provided: We construct a right-invariant metric on the group of strong symplectic homeomorphisms whose restriction to the group of all Hamiltonian homeomorphism is equivalent to Oh's metric (12), define the topological analogues of the usual symplectic displacement energy for non-empty open sets, and we prove that the latter is positive. Several open conjectures are elaborated.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.19 n.2 20172017-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200049en10.4067/S0719-06462017000200049
institution Scielo Chile
collection Scielo Chile
language English
topic Isotopies
Diffeomorphisms
Homeomorphisms
Displacement energy
Hofer-like norms
Mass flow
Riemannian metric
Lefschetz type manifolds
Flux geometry.
spellingShingle Isotopies
Diffeomorphisms
Homeomorphisms
Displacement energy
Hofer-like norms
Mass flow
Riemannian metric
Lefschetz type manifolds
Flux geometry.
Tchuiaga,S.
Koivogui,M.
Balibuno,F.
Mbazumutima,V.
On topological symplectic dynamical systems
description Abstract: This paper contributes to the study of topological symplectic dynamical systems, and hence to the extension of smooth symplectic dynamical systems. Using the positivity result of symplectic displacement energy (4), we prove that any generator of a strong symplectic isotopy uniquely determine the latter. This yields a symplectic analogue of a result proved by Oh (12), and the converse of the main theorem found in (6). Also, tools for defining and for studying the topological symplectic dynamical systems are provided: We construct a right-invariant metric on the group of strong symplectic homeomorphisms whose restriction to the group of all Hamiltonian homeomorphism is equivalent to Oh's metric (12), define the topological analogues of the usual symplectic displacement energy for non-empty open sets, and we prove that the latter is positive. Several open conjectures are elaborated.
author Tchuiaga,S.
Koivogui,M.
Balibuno,F.
Mbazumutima,V.
author_facet Tchuiaga,S.
Koivogui,M.
Balibuno,F.
Mbazumutima,V.
author_sort Tchuiaga,S.
title On topological symplectic dynamical systems
title_short On topological symplectic dynamical systems
title_full On topological symplectic dynamical systems
title_fullStr On topological symplectic dynamical systems
title_full_unstemmed On topological symplectic dynamical systems
title_sort on topological symplectic dynamical systems
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200049
work_keys_str_mv AT tchuiagas ontopologicalsymplecticdynamicalsystems
AT koivoguim ontopologicalsymplecticdynamicalsystems
AT balibunof ontopologicalsymplecticdynamicalsystems
AT mbazumutimav ontopologicalsymplecticdynamicalsystems
_version_ 1714206797091307520