A Trigonometrical Approach to Morley's Observation

Abstract: Simple trigonometrical arguments verify that in a triangle the trisectors, proximal to sides respectively, meet at the vertices of an equilateral triangle by showing that the length of each side is 8R times the sines of the angles between the sides of the triangle and the trisectors that d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gasteratos,Ioannis, Kuruklis,Spiridon, Kuruklis,Thedore
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200073
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462017000200073
record_format dspace
spelling oai:scielo:S0719-064620170002000732018-04-25A Trigonometrical Approach to Morley's ObservationGasteratos,IoannisKuruklis,SpiridonKuruklis,Thedore Angle trisection;, proximal trisector triangle trisectors Morley's theorem Morley triangle Morley's magic Morley's miracle Morley's mystery Abstract: Simple trigonometrical arguments verify that in a triangle the trisectors, proximal to sides respectively, meet at the vertices of an equilateral triangle by showing that the length of each side is 8R times the sines of the angles between the sides of the triangle and the trisectors that determine it, where R is the radius of the circumcircle of the triangle. The 27 meeting points of the trisectors, proximal to a side, determine 18 such equilaterals, which in pairs share a vertex having two collinear sides and the third parallel. Hence these points are located 6 by 6 on three triples of parallel lines.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.19 n.2 20172017-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200073en10.4067/S0719-06462017000200073
institution Scielo Chile
collection Scielo Chile
language English
topic Angle trisection;, proximal trisector
triangle trisectors
Morley's theorem
Morley triangle
Morley's magic
Morley's miracle
Morley's mystery
spellingShingle Angle trisection;, proximal trisector
triangle trisectors
Morley's theorem
Morley triangle
Morley's magic
Morley's miracle
Morley's mystery
Gasteratos,Ioannis
Kuruklis,Spiridon
Kuruklis,Thedore
A Trigonometrical Approach to Morley's Observation
description Abstract: Simple trigonometrical arguments verify that in a triangle the trisectors, proximal to sides respectively, meet at the vertices of an equilateral triangle by showing that the length of each side is 8R times the sines of the angles between the sides of the triangle and the trisectors that determine it, where R is the radius of the circumcircle of the triangle. The 27 meeting points of the trisectors, proximal to a side, determine 18 such equilaterals, which in pairs share a vertex having two collinear sides and the third parallel. Hence these points are located 6 by 6 on three triples of parallel lines.
author Gasteratos,Ioannis
Kuruklis,Spiridon
Kuruklis,Thedore
author_facet Gasteratos,Ioannis
Kuruklis,Spiridon
Kuruklis,Thedore
author_sort Gasteratos,Ioannis
title A Trigonometrical Approach to Morley's Observation
title_short A Trigonometrical Approach to Morley's Observation
title_full A Trigonometrical Approach to Morley's Observation
title_fullStr A Trigonometrical Approach to Morley's Observation
title_full_unstemmed A Trigonometrical Approach to Morley's Observation
title_sort trigonometrical approach to morley's observation
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462017000200073
work_keys_str_mv AT gasteratosioannis atrigonometricalapproachtomorleysobservation
AT kuruklisspiridon atrigonometricalapproachtomorleysobservation
AT kuruklisthedore atrigonometricalapproachtomorleysobservation
AT gasteratosioannis trigonometricalapproachtomorleysobservation
AT kuruklisspiridon trigonometricalapproachtomorleysobservation
AT kuruklisthedore trigonometricalapproachtomorleysobservation
_version_ 1714206797251739648