An approach to F. Riesz representation Theorem

ABSTRACT In this note we give a direct proof of the F. Riesz representation theorem which characterizes the linear functionals acting on the vector space of continuous functions defined on a set K. Our start point is the original formulation of Riesz where K is a closed interval. Using elementary me...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: del Rio,Rafael, Franco,Asaf L., Lara,Jose A.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT In this note we give a direct proof of the F. Riesz representation theorem which characterizes the linear functionals acting on the vector space of continuous functions defined on a set K. Our start point is the original formulation of Riesz where K is a closed interval. Using elementary measure theory, we give a proof for the case K is an arbitrary compact set of real numbers. Our proof avoids complicated arguments commonly used in the description of such functionals.