Some remarks on the non-real roots of polynomials

ABSTRACT Let f &#8712; &#8477;(t) be given by f(t, x) = xn + t · g(x) and &#946;1 < · · · < &#946;m the distinct real roots of the discriminant &#8710;(f,x)(t) of f(t, x) with respect to x. Let &#947; be the number of real roots of . For any &#958; > |&#946;...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Otake,Shuichi, Shaska,Tony
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Let f &#8712; &#8477;(t) be given by f(t, x) = xn + t · g(x) and &#946;1 < · · · < &#946;m the distinct real roots of the discriminant &#8710;(f,x)(t) of f(t, x) with respect to x. Let &#947; be the number of real roots of . For any &#958; > |&#946;m|, if n &#8722; s is odd then the number of real roots of f(&#958;, x) is &#947; + 1, and if n &#8722; s is even then the number of real roots of f(&#958;, x) is &#947;, &#947; + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n &#8805; 3 irreducible polynomials over &#8474; with many non-real roots and automorphism group Sn.