Some remarks on the non-real roots of polynomials

ABSTRACT Let f &#8712; &#8477;(t) be given by f(t, x) = xn + t · g(x) and &#946;1 < · · · < &#946;m the distinct real roots of the discriminant &#8710;(f,x)(t) of f(t, x) with respect to x. Let &#947; be the number of real roots of . For any &#958; > |&#946;...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Otake,Shuichi, Shaska,Tony
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462018000200067
record_format dspace
spelling oai:scielo:S0719-064620180002000672019-02-13Some remarks on the non-real roots of polynomialsOtake,ShuichiShaska,Tony Polynomials non-real roots discriminant Bezoutian Galois groups ABSTRACT Let f &#8712; &#8477;(t) be given by f(t, x) = xn + t · g(x) and &#946;1 < · · · < &#946;m the distinct real roots of the discriminant &#8710;(f,x)(t) of f(t, x) with respect to x. Let &#947; be the number of real roots of . For any &#958; > |&#946;m|, if n &#8722; s is odd then the number of real roots of f(&#958;, x) is &#947; + 1, and if n &#8722; s is even then the number of real roots of f(&#958;, x) is &#947;, &#947; + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n &#8805; 3 irreducible polynomials over &#8474; with many non-real roots and automorphism group Sn.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067en10.4067/S0719-06462018000200067
institution Scielo Chile
collection Scielo Chile
language English
topic Polynomials
non-real roots
discriminant
Bezoutian
Galois groups
spellingShingle Polynomials
non-real roots
discriminant
Bezoutian
Galois groups
Otake,Shuichi
Shaska,Tony
Some remarks on the non-real roots of polynomials
description ABSTRACT Let f &#8712; &#8477;(t) be given by f(t, x) = xn + t · g(x) and &#946;1 < · · · < &#946;m the distinct real roots of the discriminant &#8710;(f,x)(t) of f(t, x) with respect to x. Let &#947; be the number of real roots of . For any &#958; > |&#946;m|, if n &#8722; s is odd then the number of real roots of f(&#958;, x) is &#947; + 1, and if n &#8722; s is even then the number of real roots of f(&#958;, x) is &#947;, &#947; + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n &#8805; 3 irreducible polynomials over &#8474; with many non-real roots and automorphism group Sn.
author Otake,Shuichi
Shaska,Tony
author_facet Otake,Shuichi
Shaska,Tony
author_sort Otake,Shuichi
title Some remarks on the non-real roots of polynomials
title_short Some remarks on the non-real roots of polynomials
title_full Some remarks on the non-real roots of polynomials
title_fullStr Some remarks on the non-real roots of polynomials
title_full_unstemmed Some remarks on the non-real roots of polynomials
title_sort some remarks on the non-real roots of polynomials
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067
work_keys_str_mv AT otakeshuichi someremarksonthenonrealrootsofpolynomials
AT shaskatony someremarksonthenonrealrootsofpolynomials
_version_ 1714206800270589952