Some remarks on the non-real roots of polynomials
ABSTRACT Let f ∈ ℝ(t) be given by f(t, x) = xn + t · g(x) and β1 < · · · < βm the distinct real roots of the discriminant ∆(f,x)(t) of f(t, x) with respect to x. Let γ be the number of real roots of . For any ξ > |β...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462018000200067 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620180002000672019-02-13Some remarks on the non-real roots of polynomialsOtake,ShuichiShaska,Tony Polynomials non-real roots discriminant Bezoutian Galois groups ABSTRACT Let f ∈ ℝ(t) be given by f(t, x) = xn + t · g(x) and β1 < · · · < βm the distinct real roots of the discriminant ∆(f,x)(t) of f(t, x) with respect to x. Let γ be the number of real roots of . For any ξ > |βm|, if n − s is odd then the number of real roots of f(ξ, x) is γ + 1, and if n − s is even then the number of real roots of f(ξ, x) is γ, γ + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n ≥ 3 irreducible polynomials over ℚ with many non-real roots and automorphism group Sn.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067en10.4067/S0719-06462018000200067 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Polynomials non-real roots discriminant Bezoutian Galois groups |
spellingShingle |
Polynomials non-real roots discriminant Bezoutian Galois groups Otake,Shuichi Shaska,Tony Some remarks on the non-real roots of polynomials |
description |
ABSTRACT Let f ∈ ℝ(t) be given by f(t, x) = xn + t · g(x) and β1 < · · · < βm the distinct real roots of the discriminant ∆(f,x)(t) of f(t, x) with respect to x. Let γ be the number of real roots of . For any ξ > |βm|, if n − s is odd then the number of real roots of f(ξ, x) is γ + 1, and if n − s is even then the number of real roots of f(ξ, x) is γ, γ + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n ≥ 3 irreducible polynomials over ℚ with many non-real roots and automorphism group Sn. |
author |
Otake,Shuichi Shaska,Tony |
author_facet |
Otake,Shuichi Shaska,Tony |
author_sort |
Otake,Shuichi |
title |
Some remarks on the non-real roots of polynomials |
title_short |
Some remarks on the non-real roots of polynomials |
title_full |
Some remarks on the non-real roots of polynomials |
title_fullStr |
Some remarks on the non-real roots of polynomials |
title_full_unstemmed |
Some remarks on the non-real roots of polynomials |
title_sort |
some remarks on the non-real roots of polynomials |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000200067 |
work_keys_str_mv |
AT otakeshuichi someremarksonthenonrealrootsofpolynomials AT shaskatony someremarksonthenonrealrootsofpolynomials |
_version_ |
1714206800270589952 |