Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN,...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462018000300001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620180003000012019-03-08Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operatorAnastassiou,George A. error function based activation function multivariate quasi-interpolation neural network approximation Kantorovich-Shilkret type operator Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN, N ∈ N. When they are additionally uniformly continuous we derive pointwise and uniform convergences.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001en10.4067/S0719-06462018000300001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
error function based activation function multivariate quasi-interpolation neural network approximation Kantorovich-Shilkret type operator |
spellingShingle |
error function based activation function multivariate quasi-interpolation neural network approximation Kantorovich-Shilkret type operator Anastassiou,George A. Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
description |
Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN, N ∈ N. When they are additionally uniformly continuous we derive pointwise and uniform convergences. |
author |
Anastassiou,George A. |
author_facet |
Anastassiou,George A. |
author_sort |
Anastassiou,George A. |
title |
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
title_short |
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
title_full |
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
title_fullStr |
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
title_full_unstemmed |
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator |
title_sort |
quantitative approximation by a kantorovich-shilkret quasi-interpolation neural network operator |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001 |
work_keys_str_mv |
AT anastassiougeorgea quantitativeapproximationbyakantorovichshilkretquasiinterpolationneuralnetworkoperator |
_version_ |
1714206800440459264 |