Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator

Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Anastassiou,George A.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462018000300001
record_format dspace
spelling oai:scielo:S0719-064620180003000012019-03-08Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operatorAnastassiou,George A. error function based activation function multivariate quasi-interpolation neural network approximation Kantorovich-Shilkret type operator Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN, N ∈ N. When they are additionally uniformly continuous we derive pointwise and uniform convergences.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001en10.4067/S0719-06462018000300001
institution Scielo Chile
collection Scielo Chile
language English
topic error function based activation function
multivariate quasi-interpolation neural network approximation
Kantorovich-Shilkret type operator
spellingShingle error function based activation function
multivariate quasi-interpolation neural network approximation
Kantorovich-Shilkret type operator
Anastassiou,George A.
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
description Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN, N ∈ N. When they are additionally uniformly continuous we derive pointwise and uniform convergences.
author Anastassiou,George A.
author_facet Anastassiou,George A.
author_sort Anastassiou,George A.
title Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
title_short Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
title_full Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
title_fullStr Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
title_full_unstemmed Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
title_sort quantitative approximation by a kantorovich-shilkret quasi-interpolation neural network operator
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001
work_keys_str_mv AT anastassiougeorgea quantitativeapproximationbyakantorovichshilkretquasiinterpolationneuralnetworkoperator
_version_ 1714206800440459264