Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
Abstract In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on RN,...
Guardado en:
Autor principal: | Anastassiou,George A. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces
por: Koike,Naoyuki
Publicado: (2018) -
Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators
por: Anastassiou,George A.
Publicado: (2018) -
Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators
por: Anastassiou,George A
Publicado: (2014) -
Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators
por: Anastassiou,George A
Publicado: (2014) -
Interpolation and approximation from sublattices of C₀(X; R)
por: Kashimoto,M. S.
Publicado: (2019)