Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces
Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300013 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation exists in infinite time, if the foliation admits no minimal leaf, then the flow asymptotes the self-similar flow starting from another leaf, and if the foliation admits a minimal leaf (in this case, it is shown that there exists the only one minimal leaf), then the flow converges to the minimal leaf of the foliation in C∞-topology. These results give the geometric information between the leaves. |
---|