Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces

Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Koike,Naoyuki
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300013
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this paper, we investigate the mean curvature flows starting from all leaves of theisoparametric foliation given by a certain kind of solvable group action on a symmetric space of non-compact type. We prove that the mean curvature flow starting from each non-minimal leaf of the foliation exists in infinite time, if the foliation admits no minimal leaf, then the flow asymptotes the self-similar flow starting from another leaf, and if the foliation admits a minimal leaf (in this case, it is shown that there exists the only one minimal leaf), then the flow converges to the minimal leaf of the foliation in C∞-topology. These results give the geometric information between the leaves.