Ball comparison between Jarratt’s and other fourth order method for solving equations

Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses onl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioannis K., George,Santhosh
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462018000300065
record_format dspace
spelling oai:scielo:S0719-064620180003000652019-03-08Ball comparison between Jarratt’s and other fourth order method for solving equationsArgyros,Ioannis K.George,Santhosh Jarratt method Banach space Ball convergence Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065en10.4067/S0719-06462018000300065
institution Scielo Chile
collection Scielo Chile
language English
topic Jarratt method
Banach space
Ball convergence
spellingShingle Jarratt method
Banach space
Ball convergence
Argyros,Ioannis K.
George,Santhosh
Ball comparison between Jarratt’s and other fourth order method for solving equations
description Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.
author Argyros,Ioannis K.
George,Santhosh
author_facet Argyros,Ioannis K.
George,Santhosh
author_sort Argyros,Ioannis K.
title Ball comparison between Jarratt’s and other fourth order method for solving equations
title_short Ball comparison between Jarratt’s and other fourth order method for solving equations
title_full Ball comparison between Jarratt’s and other fourth order method for solving equations
title_fullStr Ball comparison between Jarratt’s and other fourth order method for solving equations
title_full_unstemmed Ball comparison between Jarratt’s and other fourth order method for solving equations
title_sort ball comparison between jarratt’s and other fourth order method for solving equations
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065
work_keys_str_mv AT argyrosioannisk ballcomparisonbetweenjarratt8217sandotherfourthordermethodforsolvingequations
AT georgesanthosh ballcomparisonbetweenjarratt8217sandotherfourthordermethodforsolvingequations
_version_ 1714206801352720384