Ball comparison between Jarratt’s and other fourth order method for solving equations
Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses onl...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462018000300065 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620180003000652019-03-08Ball comparison between Jarratt’s and other fourth order method for solving equationsArgyros,Ioannis K.George,Santhosh Jarratt method Banach space Ball convergence Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065en10.4067/S0719-06462018000300065 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Jarratt method Banach space Ball convergence |
spellingShingle |
Jarratt method Banach space Ball convergence Argyros,Ioannis K. George,Santhosh Ball comparison between Jarratt’s and other fourth order method for solving equations |
description |
Abstract The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order. |
author |
Argyros,Ioannis K. George,Santhosh |
author_facet |
Argyros,Ioannis K. George,Santhosh |
author_sort |
Argyros,Ioannis K. |
title |
Ball comparison between Jarratt’s and other fourth order method for solving equations |
title_short |
Ball comparison between Jarratt’s and other fourth order method for solving equations |
title_full |
Ball comparison between Jarratt’s and other fourth order method for solving equations |
title_fullStr |
Ball comparison between Jarratt’s and other fourth order method for solving equations |
title_full_unstemmed |
Ball comparison between Jarratt’s and other fourth order method for solving equations |
title_sort |
ball comparison between jarratt’s and other fourth order method for solving equations |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300065 |
work_keys_str_mv |
AT argyrosioannisk ballcomparisonbetweenjarratt8217sandotherfourthordermethodforsolvingequations AT georgesanthosh ballcomparisonbetweenjarratt8217sandotherfourthordermethodforsolvingequations |
_version_ |
1714206801352720384 |