The basic ergodic theorems, yet again

Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bochi,Jairo
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462018000300081
record_format dspace
spelling oai:scielo:S0719-064620180003000812019-03-08The basic ergodic theorems, yet againBochi,Jairo Maximal ergodic theorem Birkhoff’s ergodic theorem Rokhlin lemma Kingman’s subadditive ergodic theorem. Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen. In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081en10.4067/S0719-06462018000300081
institution Scielo Chile
collection Scielo Chile
language English
topic Maximal ergodic theorem
Birkhoff’s ergodic theorem
Rokhlin lemma
Kingman’s subadditive ergodic theorem.
spellingShingle Maximal ergodic theorem
Birkhoff’s ergodic theorem
Rokhlin lemma
Kingman’s subadditive ergodic theorem.
Bochi,Jairo
The basic ergodic theorems, yet again
description Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen. In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.
author Bochi,Jairo
author_facet Bochi,Jairo
author_sort Bochi,Jairo
title The basic ergodic theorems, yet again
title_short The basic ergodic theorems, yet again
title_full The basic ergodic theorems, yet again
title_fullStr The basic ergodic theorems, yet again
title_full_unstemmed The basic ergodic theorems, yet again
title_sort basic ergodic theorems, yet again
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081
work_keys_str_mv AT bochijairo thebasicergodictheoremsyetagain
AT bochijairo basicergodictheoremsyetagain
_version_ 1714206801525735424