The basic ergodic theorems, yet again
Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462018000300081 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620180003000812019-03-08The basic ergodic theorems, yet againBochi,Jairo Maximal ergodic theorem Birkhoff’s ergodic theorem Rokhlin lemma Kingman’s subadditive ergodic theorem. Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen. In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.20 n.3 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081en10.4067/S0719-06462018000300081 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Maximal ergodic theorem Birkhoff’s ergodic theorem Rokhlin lemma Kingman’s subadditive ergodic theorem. |
spellingShingle |
Maximal ergodic theorem Birkhoff’s ergodic theorem Rokhlin lemma Kingman’s subadditive ergodic theorem. Bochi,Jairo The basic ergodic theorems, yet again |
description |
Abstract A generalization of Rokhlin’s Tower Lemma is presented. The Maximal Ergodic Theorem is then obtained as a corollary. We also use the generalized Rokhlin lemma, this time combined with a subadditive version of Kac’s formula, to deduce a subadditive version of the Maximal Ergodic Theorem due to Silva and Thieullen. In both the additive and subadditive cases, these maximal theorems immediately imply that “heavy” points have positive probability. We use heaviness to prove the pointwise ergodic theorems of Birkhoff and Kingman. |
author |
Bochi,Jairo |
author_facet |
Bochi,Jairo |
author_sort |
Bochi,Jairo |
title |
The basic ergodic theorems, yet again |
title_short |
The basic ergodic theorems, yet again |
title_full |
The basic ergodic theorems, yet again |
title_fullStr |
The basic ergodic theorems, yet again |
title_full_unstemmed |
The basic ergodic theorems, yet again |
title_sort |
basic ergodic theorems, yet again |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462018000300081 |
work_keys_str_mv |
AT bochijairo thebasicergodictheoremsyetagain AT bochijairo basicergodictheoremsyetagain |
_version_ |
1714206801525735424 |