On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds

Abstract Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇&a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Belishev,M. I., Vakulenko,A. F.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462019000100001
record_format dspace
spelling oai:scielo:S0719-064620190001000012019-08-09On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifoldsBelishev,M. I.Vakulenko,A. F. 3d quaternion harmonic fields real uniform Banach algebras StoneWeierstrass type theorem on density uniqueness theorems. Abstract Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space (Ω) of harmonic fields is a subspace of the Banach algebra 𝒞 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.21 n.1 20192019-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000100001en10.4067/S0719-06462019000100001
institution Scielo Chile
collection Scielo Chile
language English
topic 3d quaternion harmonic fields
real uniform Banach algebras
StoneWeierstrass type theorem on density
uniqueness theorems.
spellingShingle 3d quaternion harmonic fields
real uniform Banach algebras
StoneWeierstrass type theorem on density
uniqueness theorems.
Belishev,M. I.
Vakulenko,A. F.
On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
description Abstract Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space (Ω) of harmonic fields is a subspace of the Banach algebra 𝒞 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.
author Belishev,M. I.
Vakulenko,A. F.
author_facet Belishev,M. I.
Vakulenko,A. F.
author_sort Belishev,M. I.
title On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
title_short On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
title_full On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
title_fullStr On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
title_full_unstemmed On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
title_sort on algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000100001
work_keys_str_mv AT belishevmi onalgebraicanduniquenesspropertiesofharmonicquaternionfieldson3dmanifolds
AT vakulenkoaf onalgebraicanduniquenesspropertiesofharmonicquaternionfieldson3dmanifolds
_version_ 1714206801683021824