On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
Abstract Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇&a...
Guardado en:
Autores principales: | Belishev,M. I., Vakulenko,A. F. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EXISTENCE AND UNIQUENESS SOLUTION OF A CLASS OF QUASILINEAR PARABOLIC BOUNDARY CONTROL
por: Farag,M. H, et al.
Publicado: (2013) -
On the Mazur-Ulam theorem for Fréchet algebras
por: Zivari-Kazempour,A., et al.
Publicado: (2020) -
ON THE ALGEBRAIC DIMENSION OF BANACH SPACES OVER NON-ARCHIMEDEAN VALUED FIELDS OR ARBITRARY RANK
por: OCHSENIUS,HERMINIA, et al.
Publicado: (2007) -
Corona theorem for strictly pseudoconvex domains
por: Sebastian Gwizdek
Publicado: (2021) -
Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations
por: Ardjouni,Abdelouaheb
Publicado: (2021)