Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions
Abstract The prime goal of this paper is to establish sharp lower and upper bounds for useful functions such as the exponential functions, with a focus on exp(−x²), the trigonometric functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds obtained for hyperbo...
Enregistré dans:
| Auteurs principaux: | Bagul,Yogesh J., Chesneau,Christophe |
|---|---|
| Langue: | English |
| Publié: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2019
|
| Sujets: | |
| Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000100021 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Tan-G class of trigonometric distributions and its applications
par: Souza,Luciano, et autres
Publié: (2021) -
Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay
par: Yankson,Ernest
Publié: (2021) -
A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps
par: Dragomir,S. S
Publié: (2017) -
Inequalities for Chebyshev Functional in Banach Algebras
par: Dragomir,S. S., et autres
Publié: (2017) -
A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
par: Ray,Prasanta Kumar
Publié: (2020)