Zk-Magic Labeling of Path Union of Graphs

ABSTRACT For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A− {0} such that, the vertex labeling f + defined as f + (v) = ∑ f (uv) taken over all edges uv incident at v is a constant. An A-magic gr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Daisy,K. Jeya, Semanicová-Fenovníková,Andrea
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000200015
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462019000200015
record_format dspace
spelling oai:scielo:S0719-064620190002000152019-10-11Zk-Magic Labeling of Path Union of GraphsJeyanthi,P.Daisy,K. JeyaSemanicová-Fenovníková,Andrea A-magic labeling Zk-magic labeling Zk-magic graph generalized Petersen graph shell wheel closed helm double wheel flower cylinder total graph of a path lotus inside a circle n-pan graph ABSTRACT For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A− {0} such that, the vertex labeling f + defined as f + (v) = ∑ f (uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z k -magic graph if the group A is Z k , the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Z k -magic graphs.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.21 n.2 20192019-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000200015en10.4067/S0719-06462019000200015
institution Scielo Chile
collection Scielo Chile
language English
topic A-magic labeling
Zk-magic labeling
Zk-magic graph
generalized Petersen graph
shell
wheel
closed helm
double wheel
flower
cylinder
total graph of a path
lotus inside a circle
n-pan graph
spellingShingle A-magic labeling
Zk-magic labeling
Zk-magic graph
generalized Petersen graph
shell
wheel
closed helm
double wheel
flower
cylinder
total graph of a path
lotus inside a circle
n-pan graph
Jeyanthi,P.
Daisy,K. Jeya
Semanicová-Fenovníková,Andrea
Zk-Magic Labeling of Path Union of Graphs
description ABSTRACT For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A− {0} such that, the vertex labeling f + defined as f + (v) = ∑ f (uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z k -magic graph if the group A is Z k , the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Z k -magic graphs.
author Jeyanthi,P.
Daisy,K. Jeya
Semanicová-Fenovníková,Andrea
author_facet Jeyanthi,P.
Daisy,K. Jeya
Semanicová-Fenovníková,Andrea
author_sort Jeyanthi,P.
title Zk-Magic Labeling of Path Union of Graphs
title_short Zk-Magic Labeling of Path Union of Graphs
title_full Zk-Magic Labeling of Path Union of Graphs
title_fullStr Zk-Magic Labeling of Path Union of Graphs
title_full_unstemmed Zk-Magic Labeling of Path Union of Graphs
title_sort zk-magic labeling of path union of graphs
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462019000200015
work_keys_str_mv AT jeyanthip zkmagiclabelingofpathunionofgraphs
AT daisykjeya zkmagiclabelingofpathunionofgraphs
AT semanicovafenovnikovaandrea zkmagiclabelingofpathunionofgraphs
_version_ 1714206802865815552