Bounds for the Generalized (Φ, f)-Mean Difference
Abstract In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure e...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462020000100001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620200001000012020-04-24Bounds for the Generalized (Φ, f)-Mean DifferenceDragomir,Silvestru Sever Gini mean difference Mean deviation Lebesgue integral Expectation Jensen’s integral inequality Abstract In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.1 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000100001en10.4067/S0719-06462020000100001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Gini mean difference Mean deviation Lebesgue integral Expectation Jensen’s integral inequality |
spellingShingle |
Gini mean difference Mean deviation Lebesgue integral Expectation Jensen’s integral inequality Dragomir,Silvestru Sever Bounds for the Generalized (Φ, f)-Mean Difference |
description |
Abstract In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality. |
author |
Dragomir,Silvestru Sever |
author_facet |
Dragomir,Silvestru Sever |
author_sort |
Dragomir,Silvestru Sever |
title |
Bounds for the Generalized (Φ, f)-Mean Difference |
title_short |
Bounds for the Generalized (Φ, f)-Mean Difference |
title_full |
Bounds for the Generalized (Φ, f)-Mean Difference |
title_fullStr |
Bounds for the Generalized (Φ, f)-Mean Difference |
title_full_unstemmed |
Bounds for the Generalized (Φ, f)-Mean Difference |
title_sort |
bounds for the generalized (Φ, f)-mean difference |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000100001 |
work_keys_str_mv |
AT dragomirsilvestrusever boundsforthegeneralized934fmeandifference |
_version_ |
1714206805022736384 |