Super-Halley method under majorant conditions in Banach spaces
Abstract In this paper, we have studied local convergence of Super-Halley method in Banach spaces under the assumption of second order majorant conditions. This approach allows us to obtain generalization of earlier convergence analysis under majorizing sequences. Two important special cases of the...
Guardado en:
Autores principales: | Nisha,Shwet, Parida,P. K. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000100055 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible
por: Argyros,Ioannis K, et al.
Publicado: (2011) -
The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert kernel
por: Saleh,M. H, et al.
Publicado: (2010) -
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
por: ARGYROS,IOANNIS K, et al.
Publicado: (2008) -
ON THE LOCAL CONVERGENCE OF A MIDPOINT METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
por: Argyros,Ioannis K
Publicado: (2009) -
On the Gauss-Newton method for solving equations
por: Argyros,Ioaniss K, et al.
Publicado: (2012)