Topological algebras with subadditive boundedness radius
Abstract Let A be a topological algebra and β a subadditive boundedness radius on A. In this paper we show that β is, under certain conditions, automatically submultiplicative. Then we apply this fact to prove that the spectrum of any element of A is non-empty. Finally, in the case...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300289 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Let A be a topological algebra and β a subadditive boundedness radius on A. In this paper we show that β is, under certain conditions, automatically submultiplicative. Then we apply this fact to prove that the spectrum of any element of A is non-empty. Finally, in the case when A is a normed algebra, we compare the initial normed topology with the normed topology τβ, induced by β on A, where β−1(0) = 0. |
---|