Odd Harmonious Labeling of Some Classes of Graphs
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined by f*(uv) = f(u) + f(v) is a bijection. In this paper we prove that T p - tree, T ô P m , T ô 2 P m , regular bamboo tree, C n ô P m , C n ô 2P m and subdivided grid graphs are odd harmonious. |
---|