Odd Harmonious Labeling of Some Classes of Graphs
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462020000300299 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620200003002992020-12-30Odd Harmonious Labeling of Some Classes of GraphsJeyanthi,P.Philo,S. harmonious labeling odd harmonious labeling transformed tree sub-divided grid graph regular bamboo tree. Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined by f*(uv) = f(u) + f(v) is a bijection. In this paper we prove that T p - tree, T ô P m , T ô 2 P m , regular bamboo tree, C n ô P m , C n ô 2P m and subdivided grid graphs are odd harmonious.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299en10.4067/S0719-06462020000300299 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
harmonious labeling odd harmonious labeling transformed tree sub-divided grid graph regular bamboo tree. |
spellingShingle |
harmonious labeling odd harmonious labeling transformed tree sub-divided grid graph regular bamboo tree. Jeyanthi,P. Philo,S. Odd Harmonious Labeling of Some Classes of Graphs |
description |
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined by f*(uv) = f(u) + f(v) is a bijection. In this paper we prove that T p - tree, T ô P m , T ô 2 P m , regular bamboo tree, C n ô P m , C n ô 2P m and subdivided grid graphs are odd harmonious. |
author |
Jeyanthi,P. Philo,S. |
author_facet |
Jeyanthi,P. Philo,S. |
author_sort |
Jeyanthi,P. |
title |
Odd Harmonious Labeling of Some Classes of Graphs |
title_short |
Odd Harmonious Labeling of Some Classes of Graphs |
title_full |
Odd Harmonious Labeling of Some Classes of Graphs |
title_fullStr |
Odd Harmonious Labeling of Some Classes of Graphs |
title_full_unstemmed |
Odd Harmonious Labeling of Some Classes of Graphs |
title_sort |
odd harmonious labeling of some classes of graphs |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299 |
work_keys_str_mv |
AT jeyanthip oddharmoniouslabelingofsomeclassesofgraphs AT philos oddharmoniouslabelingofsomeclassesofgraphs |
_version_ |
1714206807752179712 |