Odd Harmonious Labeling of Some Classes of Graphs

Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Philo,S.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462020000300299
record_format dspace
spelling oai:scielo:S0719-064620200003002992020-12-30Odd Harmonious Labeling of Some Classes of GraphsJeyanthi,P.Philo,S. harmonious labeling odd harmonious labeling transformed tree sub-divided grid graph regular bamboo tree. Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined by f*(uv) = f(u) + f(v) is a bijection. In this paper we prove that T p - tree, T ô P m , T ô 2 P m , regular bamboo tree, C n ô P m , C n ô 2P m and subdivided grid graphs are odd harmonious.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299en10.4067/S0719-06462020000300299
institution Scielo Chile
collection Scielo Chile
language English
topic harmonious labeling
odd harmonious labeling
transformed tree
sub-divided grid graph
regular bamboo tree.
spellingShingle harmonious labeling
odd harmonious labeling
transformed tree
sub-divided grid graph
regular bamboo tree.
Jeyanthi,P.
Philo,S.
Odd Harmonious Labeling of Some Classes of Graphs
description Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f: V (G) → {0, 1, 2, ・ ・ ・ , 2q − 1} such that the induced function f* : E(G) → {1, 3, ・ ・ ・ , 2q − 1} defined by f*(uv) = f(u) + f(v) is a bijection. In this paper we prove that T p - tree, T ô P m , T ô 2 P m , regular bamboo tree, C n ô P m , C n ô 2P m and subdivided grid graphs are odd harmonious.
author Jeyanthi,P.
Philo,S.
author_facet Jeyanthi,P.
Philo,S.
author_sort Jeyanthi,P.
title Odd Harmonious Labeling of Some Classes of Graphs
title_short Odd Harmonious Labeling of Some Classes of Graphs
title_full Odd Harmonious Labeling of Some Classes of Graphs
title_fullStr Odd Harmonious Labeling of Some Classes of Graphs
title_full_unstemmed Odd Harmonious Labeling of Some Classes of Graphs
title_sort odd harmonious labeling of some classes of graphs
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300299
work_keys_str_mv AT jeyanthip oddharmoniouslabelingofsomeclassesofgraphs
AT philos oddharmoniouslabelingofsomeclassesofgraphs
_version_ 1714206807752179712