Characterization of Upper Detour Monophonic Domination Number

Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M ⊆ V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Khayyoom,M. Mohammed Abdul
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M &#8838; V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by &#947;+ dm (G). For any two positive integers p and q with 2 &#8804; p &#8804; q there is a connected graph G with &#947;m (G) = &#947;dm (G) = p and &#947;+ dm (G) = q. For any three positive integers p, q, r with 2 < p < q < r, there is a connected graph G with m(G) = p, &#947;dm (G) = q and &#947;+ dm (G) = r. Let p and q be two positive integers with 2 < p < q such that &#947;dm (G) = p and &#947;+ dm (G) = q. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with 2 &#8804; p &#8804; q &#8804; r. Then, there exist a connected graph G such that &#947;m (G)= p, &#947;+ dm (G) = q and |V (G)| = r.