Characterization of Upper Detour Monophonic Domination Number
Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M ⊆ V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462020000300315 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620200003003152020-12-30Characterization of Upper Detour Monophonic Domination NumberKhayyoom,M. Mohammed Abdul Monophonic number Domination Number Detour monophonic number Detour monophonic domination number Upper detour monophonic domination number. Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M ⊆ V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by γ+ dm (G). For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G with γm (G) = γdm (G) = p and γ+ dm (G) = q. For any three positive integers p, q, r with 2 < p < q < r, there is a connected graph G with m(G) = p, γdm (G) = q and γ+ dm (G) = r. Let p and q be two positive integers with 2 < p < q such that γdm (G) = p and γ+ dm (G) = q. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r. Then, there exist a connected graph G such that γm (G)= p, γ+ dm (G) = q and |V (G)| = r.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315en10.4067/S0719-06462020000300315 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Monophonic number Domination Number Detour monophonic number Detour monophonic domination number Upper detour monophonic domination number. |
spellingShingle |
Monophonic number Domination Number Detour monophonic number Detour monophonic domination number Upper detour monophonic domination number. Khayyoom,M. Mohammed Abdul Characterization of Upper Detour Monophonic Domination Number |
description |
Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M ⊆ V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by γ+ dm (G). For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G with γm (G) = γdm (G) = p and γ+ dm (G) = q. For any three positive integers p, q, r with 2 < p < q < r, there is a connected graph G with m(G) = p, γdm (G) = q and γ+ dm (G) = r. Let p and q be two positive integers with 2 < p < q such that γdm (G) = p and γ+ dm (G) = q. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r. Then, there exist a connected graph G such that γm (G)= p, γ+ dm (G) = q and |V (G)| = r. |
author |
Khayyoom,M. Mohammed Abdul |
author_facet |
Khayyoom,M. Mohammed Abdul |
author_sort |
Khayyoom,M. Mohammed Abdul |
title |
Characterization of Upper Detour Monophonic Domination Number |
title_short |
Characterization of Upper Detour Monophonic Domination Number |
title_full |
Characterization of Upper Detour Monophonic Domination Number |
title_fullStr |
Characterization of Upper Detour Monophonic Domination Number |
title_full_unstemmed |
Characterization of Upper Detour Monophonic Domination Number |
title_sort |
characterization of upper detour monophonic domination number |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315 |
work_keys_str_mv |
AT khayyoommmohammedabdul characterizationofupperdetourmonophonicdominationnumber |
_version_ |
1714206807914708992 |