Characterization of Upper Detour Monophonic Domination Number

Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M ⊆ V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Khayyoom,M. Mohammed Abdul
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462020000300315
record_format dspace
spelling oai:scielo:S0719-064620200003003152020-12-30Characterization of Upper Detour Monophonic Domination NumberKhayyoom,M. Mohammed Abdul Monophonic number Domination Number Detour monophonic number Detour monophonic domination number Upper detour monophonic domination number. Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M &#8838; V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by &#947;+ dm (G). For any two positive integers p and q with 2 &#8804; p &#8804; q there is a connected graph G with &#947;m (G) = &#947;dm (G) = p and &#947;+ dm (G) = q. For any three positive integers p, q, r with 2 < p < q < r, there is a connected graph G with m(G) = p, &#947;dm (G) = q and &#947;+ dm (G) = r. Let p and q be two positive integers with 2 < p < q such that &#947;dm (G) = p and &#947;+ dm (G) = q. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with 2 &#8804; p &#8804; q &#8804; r. Then, there exist a connected graph G such that &#947;m (G)= p, &#947;+ dm (G) = q and |V (G)| = r.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315en10.4067/S0719-06462020000300315
institution Scielo Chile
collection Scielo Chile
language English
topic Monophonic number
Domination Number
Detour monophonic number
Detour monophonic domination number
Upper detour monophonic domination number.
spellingShingle Monophonic number
Domination Number
Detour monophonic number
Detour monophonic domination number
Upper detour monophonic domination number.
Khayyoom,M. Mohammed Abdul
Characterization of Upper Detour Monophonic Domination Number
description Abstract This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V (G), a set M &#8838; V (G) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by &#947;+ dm (G). For any two positive integers p and q with 2 &#8804; p &#8804; q there is a connected graph G with &#947;m (G) = &#947;dm (G) = p and &#947;+ dm (G) = q. For any three positive integers p, q, r with 2 < p < q < r, there is a connected graph G with m(G) = p, &#947;dm (G) = q and &#947;+ dm (G) = r. Let p and q be two positive integers with 2 < p < q such that &#947;dm (G) = p and &#947;+ dm (G) = q. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with 2 &#8804; p &#8804; q &#8804; r. Then, there exist a connected graph G such that &#947;m (G)= p, &#947;+ dm (G) = q and |V (G)| = r.
author Khayyoom,M. Mohammed Abdul
author_facet Khayyoom,M. Mohammed Abdul
author_sort Khayyoom,M. Mohammed Abdul
title Characterization of Upper Detour Monophonic Domination Number
title_short Characterization of Upper Detour Monophonic Domination Number
title_full Characterization of Upper Detour Monophonic Domination Number
title_fullStr Characterization of Upper Detour Monophonic Domination Number
title_full_unstemmed Characterization of Upper Detour Monophonic Domination Number
title_sort characterization of upper detour monophonic domination number
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300315
work_keys_str_mv AT khayyoommmohammedabdul characterizationofupperdetourmonophonicdominationnumber
_version_ 1714206807914708992