Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions

Abstract In this paper, we prove the existence of mild solutions of a class of fractional semilinear integro-differential equations of order β ∈ (1, 2] subjected to noncompact initial nonlocal conditions. We assume that the linear part generates an arbitrarily strongly continuous...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aouane,Abdeldjalil, Djebali,Smaïl, Taoudi,Mohamed Aziz
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300361
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this paper, we prove the existence of mild solutions of a class of fractional semilinear integro-differential equations of order β ∈ (1, 2] subjected to noncompact initial nonlocal conditions. We assume that the linear part generates an arbitrarily strongly continuous β-order fractional cosine family, while the nonlinear forcing term is of Carath´eodory type and satisfies some fairly general growth conditions. Our approach combines the Monch fixed point theorem with some recent results regarding the measure of noncompactness of integral operators. Our conclusions improve and generalize many earlier related works. An example is provided to illustrate the main results.