Curves in low dimensional projective spaces with the lowest ranks
Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we constr...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462020000300379 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620200003003792020-12-30Curves in low dimensional projective spaces with the lowest ranksBallico,Edoardo X-rank projective curve space curve curve in projective spaces. Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we construct many smooth curves such that r X (q) ≤ 2 (resp. r X (q) ≤ 3) for all q ∈ ℙr (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379en10.4067/S0719-06462020000300379 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
X-rank projective curve space curve curve in projective spaces. |
spellingShingle |
X-rank projective curve space curve curve in projective spaces. Ballico,Edoardo Curves in low dimensional projective spaces with the lowest ranks |
description |
Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we construct many smooth curves such that r X (q) ≤ 2 (resp. r X (q) ≤ 3) for all q ∈ ℙr (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. |
author |
Ballico,Edoardo |
author_facet |
Ballico,Edoardo |
author_sort |
Ballico,Edoardo |
title |
Curves in low dimensional projective spaces with the lowest ranks |
title_short |
Curves in low dimensional projective spaces with the lowest ranks |
title_full |
Curves in low dimensional projective spaces with the lowest ranks |
title_fullStr |
Curves in low dimensional projective spaces with the lowest ranks |
title_full_unstemmed |
Curves in low dimensional projective spaces with the lowest ranks |
title_sort |
curves in low dimensional projective spaces with the lowest ranks |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379 |
work_keys_str_mv |
AT ballicoedoardo curvesinlowdimensionalprojectivespaceswiththelowestranks |
_version_ |
1714206808577409024 |