Curves in low dimensional projective spaces with the lowest ranks

Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we constr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ballico,Edoardo
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462020000300379
record_format dspace
spelling oai:scielo:S0719-064620200003003792020-12-30Curves in low dimensional projective spaces with the lowest ranksBallico,Edoardo X-rank projective curve space curve curve in projective spaces. Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we construct many smooth curves such that r X (q) ≤ 2 (resp. r X (q) ≤ 3) for all q ∈ ℙr (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379en10.4067/S0719-06462020000300379
institution Scielo Chile
collection Scielo Chile
language English
topic X-rank
projective curve
space curve
curve in projective spaces.
spellingShingle X-rank
projective curve
space curve
curve in projective spaces.
Ballico,Edoardo
Curves in low dimensional projective spaces with the lowest ranks
description Abstract Let X ⊂ ℙr be an integral and non-degenerate curve. For each q ∈ ℙr the X-rank r X (q) of q is the minimal number of points of X spanning q. A general point of ℙr has X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we construct many smooth curves such that r X (q) ≤ 2 (resp. r X (q) ≤ 3) for all q ∈ ℙr (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus.
author Ballico,Edoardo
author_facet Ballico,Edoardo
author_sort Ballico,Edoardo
title Curves in low dimensional projective spaces with the lowest ranks
title_short Curves in low dimensional projective spaces with the lowest ranks
title_full Curves in low dimensional projective spaces with the lowest ranks
title_fullStr Curves in low dimensional projective spaces with the lowest ranks
title_full_unstemmed Curves in low dimensional projective spaces with the lowest ranks
title_sort curves in low dimensional projective spaces with the lowest ranks
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300379
work_keys_str_mv AT ballicoedoardo curvesinlowdimensionalprojectivespaceswiththelowestranks
_version_ 1714206808577409024