Toric, U(2), and LeBrun metrics

Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Weber,Brian
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462020000300395
record_format dspace
spelling oai:scielo:S0719-064620200003003952020-12-30Toric, U(2), and LeBrun metricsWeber,Brian Differential geometry Kähler geometry canonical metrics ansatz. Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler. Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples-the exceptional half-plane metric and the Page metric-in terms of the LeBrun ansatz.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395en10.4067/S0719-06462020000300395
institution Scielo Chile
collection Scielo Chile
language English
topic Differential geometry
Kähler geometry
canonical metrics
ansatz.
spellingShingle Differential geometry
Kähler geometry
canonical metrics
ansatz.
Weber,Brian
Toric, U(2), and LeBrun metrics
description Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler. Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples-the exceptional half-plane metric and the Page metric-in terms of the LeBrun ansatz.
author Weber,Brian
author_facet Weber,Brian
author_sort Weber,Brian
title Toric, U(2), and LeBrun metrics
title_short Toric, U(2), and LeBrun metrics
title_full Toric, U(2), and LeBrun metrics
title_fullStr Toric, U(2), and LeBrun metrics
title_full_unstemmed Toric, U(2), and LeBrun metrics
title_sort toric, u(2), and lebrun metrics
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395
work_keys_str_mv AT weberbrian toricu2andlebrunmetrics
_version_ 1714206808765104128