Toric, U(2), and LeBrun metrics
Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which i...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462020000300395 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620200003003952020-12-30Toric, U(2), and LeBrun metricsWeber,Brian Differential geometry Kähler geometry canonical metrics ansatz. Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler. Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples-the exceptional half-plane metric and the Page metric-in terms of the LeBrun ansatz.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.22 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395en10.4067/S0719-06462020000300395 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Differential geometry Kähler geometry canonical metrics ansatz. |
spellingShingle |
Differential geometry Kähler geometry canonical metrics ansatz. Weber,Brian Toric, U(2), and LeBrun metrics |
description |
Abstract The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler. Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples-the exceptional half-plane metric and the Page metric-in terms of the LeBrun ansatz. |
author |
Weber,Brian |
author_facet |
Weber,Brian |
author_sort |
Weber,Brian |
title |
Toric, U(2), and LeBrun metrics |
title_short |
Toric, U(2), and LeBrun metrics |
title_full |
Toric, U(2), and LeBrun metrics |
title_fullStr |
Toric, U(2), and LeBrun metrics |
title_full_unstemmed |
Toric, U(2), and LeBrun metrics |
title_sort |
toric, u(2), and lebrun metrics |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462020000300395 |
work_keys_str_mv |
AT weberbrian toricu2andlebrunmetrics |
_version_ |
1714206808765104128 |