Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations

Abstract In this paper we give sufficient conditions on k ∈ L 1(ℝ) and the positive measures µ, ν such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo- almost automorphic) function spaces are invariant by the con- volution pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Békollè,David, Ezzinbi,Khalil, Fatajou,Samir, Danga,Duplex Elvis Houpa, Béssémè,Fritz Mbounja
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100063
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this paper we give sufficient conditions on k ∈ L 1(ℝ) and the positive measures µ, ν such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo- almost automorphic) function spaces are invariant by the con- volution product ζf = k ∗ f. We provide an appropriate example to illustrate our convolution results. As a conse- quence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of (µ, ν)- pseudo-almost periodic (respectively, (µ, ν)- pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.