Extended domain for fifth convergence order schemes
Abstract We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smalle...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100097 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462021000100097 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620210001000972021-05-11Extended domain for fifth convergence order schemesArgyros,Ioannis K.George,Santhosh Fifth order convergence scheme w-continuity convergence analysis Fréchet derivative Banach space. Abstract We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smaller domain included in the older domain leading this way to tighter Lipschitz type functions. These extensions are obtained without additional hypotheses. Numerical examples are used to test the convergence criteria and also to show the superiority for our results over earlier ones. Our idea can be utilized to extend other schemes using inverses in a similar way.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.1 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100097en10.4067/S0719-06462021000100097 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Fifth order convergence scheme w-continuity convergence analysis Fréchet derivative Banach space. |
spellingShingle |
Fifth order convergence scheme w-continuity convergence analysis Fréchet derivative Banach space. Argyros,Ioannis K. George,Santhosh Extended domain for fifth convergence order schemes |
description |
Abstract We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smaller domain included in the older domain leading this way to tighter Lipschitz type functions. These extensions are obtained without additional hypotheses. Numerical examples are used to test the convergence criteria and also to show the superiority for our results over earlier ones. Our idea can be utilized to extend other schemes using inverses in a similar way. |
author |
Argyros,Ioannis K. George,Santhosh |
author_facet |
Argyros,Ioannis K. George,Santhosh |
author_sort |
Argyros,Ioannis K. |
title |
Extended domain for fifth convergence order schemes |
title_short |
Extended domain for fifth convergence order schemes |
title_full |
Extended domain for fifth convergence order schemes |
title_fullStr |
Extended domain for fifth convergence order schemes |
title_full_unstemmed |
Extended domain for fifth convergence order schemes |
title_sort |
extended domain for fifth convergence order schemes |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100097 |
work_keys_str_mv |
AT argyrosioannisk extendeddomainforfifthconvergenceorderschemes AT georgesanthosh extendeddomainforfifthconvergenceorderschemes |
_version_ |
1714206809648005120 |