Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are u...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462021000100145 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620210001001452021-05-11Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equationsSi Bachir,FatimaAbbas,SaidBenbachir,MaamarBenchohra,MouffakN'Guérékata,Gaston M. ѱ-Hilfer fractional derivative Schauder fixed-point Theorem uniformly locally attractive Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.1 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145en10.4067/S0719-06462021000100145 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
ѱ-Hilfer fractional derivative Schauder fixed-point Theorem uniformly locally attractive |
spellingShingle |
ѱ-Hilfer fractional derivative Schauder fixed-point Theorem uniformly locally attractive Si Bachir,Fatima Abbas,Said Benbachir,Maamar Benchohra,Mouffak N'Guérékata,Gaston M. Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
description |
Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive. |
author |
Si Bachir,Fatima Abbas,Said Benbachir,Maamar Benchohra,Mouffak N'Guérékata,Gaston M. |
author_facet |
Si Bachir,Fatima Abbas,Said Benbachir,Maamar Benchohra,Mouffak N'Guérékata,Gaston M. |
author_sort |
Si Bachir,Fatima |
title |
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
title_short |
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
title_full |
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
title_fullStr |
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
title_full_unstemmed |
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations |
title_sort |
existence and attractivity results for ѱ-hilfer hybrid fractional differential equations |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145 |
work_keys_str_mv |
AT sibachirfatima existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations AT abbassaid existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations AT benbachirmaamar existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations AT benchohramouffak existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations AT nguerekatagastonm existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations |
_version_ |
1714206810154467328 |