Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations

Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Si Bachir,Fatima, Abbas,Said, Benbachir,Maamar, Benchohra,Mouffak, N'Guérékata,Gaston M.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462021000100145
record_format dspace
spelling oai:scielo:S0719-064620210001001452021-05-11Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equationsSi Bachir,FatimaAbbas,SaidBenbachir,MaamarBenchohra,MouffakN'Guérékata,Gaston M. ѱ-Hilfer fractional derivative Schauder fixed-point Theorem uniformly locally attractive Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.1 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145en10.4067/S0719-06462021000100145
institution Scielo Chile
collection Scielo Chile
language English
topic ѱ-Hilfer fractional derivative
Schauder fixed-point Theorem
uniformly locally attractive
spellingShingle ѱ-Hilfer fractional derivative
Schauder fixed-point Theorem
uniformly locally attractive
Si Bachir,Fatima
Abbas,Said
Benbachir,Maamar
Benchohra,Mouffak
N'Guérékata,Gaston M.
Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
description Abstract In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ѱ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive.
author Si Bachir,Fatima
Abbas,Said
Benbachir,Maamar
Benchohra,Mouffak
N'Guérékata,Gaston M.
author_facet Si Bachir,Fatima
Abbas,Said
Benbachir,Maamar
Benchohra,Mouffak
N'Guérékata,Gaston M.
author_sort Si Bachir,Fatima
title Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
title_short Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
title_full Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
title_fullStr Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
title_full_unstemmed Existence and attractivity results for ѱ-Hilfer hybrid fractional differential equations
title_sort existence and attractivity results for ѱ-hilfer hybrid fractional differential equations
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100145
work_keys_str_mv AT sibachirfatima existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations
AT abbassaid existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations
AT benbachirmaamar existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations
AT benchohramouffak existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations
AT nguerekatagastonm existenceandattractivityresultsfor1137hilferhybridfractionaldifferentialequations
_version_ 1714206810154467328