Idempotents in an ultrametric Banach algebra

Abstract Let IK be a complete ultrametric field and let A be a unital commutative ultrametric Banach IK-algebra. Suppose that the multiplicative spectrum admits a partition in two open closed subsets. Then there exist unique idempotents u, v ϵ A such that ϕ (u) = 1, ϕ (v)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Escassut,Alain
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100161
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let IK be a complete ultrametric field and let A be a unital commutative ultrametric Banach IK-algebra. Suppose that the multiplicative spectrum admits a partition in two open closed subsets. Then there exist unique idempotents u, v &#1013; A such that &#981; (u) = 1, &#981; (v) = 0 &#8704; &#981; &#1013; U, &#981; (u) = 0 &#981; (v) = 1 &#8704; &#981; &#1013; V . Suppose that IK is algebraically closed. If an element x &#1013; A has an empty annulus r < |&#958; &#8722; a| < s in its spectrum sp(x), then there exist unique idempotents u, v such that &#981; (u) = 1; &#981; (v) = 0 whenever &#981; (x &#8722; a) &#8804; r and &#981; (u) = 0; &#981; (v) = 1 whenever &#981; (x &#8722; a) &#8805; s.