Idempotents in an ultrametric Banach algebra
Abstract Let IK be a complete ultrametric field and let A be a unital commutative ultrametric Banach IK-algebra. Suppose that the multiplicative spectrum admits a partition in two open closed subsets. Then there exist unique idempotents u, v ϵ A such that ϕ (u) = 1, ϕ (v)...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100161 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462021000100161 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620210001001612021-05-11Idempotents in an ultrametric Banach algebraEscassut,Alain ultrametric Banach algebras multiplicative semi-norms idempotents affinoid algebras. Abstract Let IK be a complete ultrametric field and let A be a unital commutative ultrametric Banach IK-algebra. Suppose that the multiplicative spectrum admits a partition in two open closed subsets. Then there exist unique idempotents u, v ϵ A such that ϕ (u) = 1, ϕ (v) = 0 ∀ ϕ ϵ U, ϕ (u) = 0 ϕ (v) = 1 ∀ ϕ ϵ V . Suppose that IK is algebraically closed. If an element x ϵ A has an empty annulus r < |ξ − a| < s in its spectrum sp(x), then there exist unique idempotents u, v such that ϕ (u) = 1; ϕ (v) = 0 whenever ϕ (x − a) ≤ r and ϕ (u) = 0; ϕ (v) = 1 whenever ϕ (x − a) ≥ s.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.1 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100161en10.4067/S0719-06462021000100161 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
ultrametric Banach algebras multiplicative semi-norms idempotents affinoid algebras. |
spellingShingle |
ultrametric Banach algebras multiplicative semi-norms idempotents affinoid algebras. Escassut,Alain Idempotents in an ultrametric Banach algebra |
description |
Abstract Let IK be a complete ultrametric field and let A be a unital commutative ultrametric Banach IK-algebra. Suppose that the multiplicative spectrum admits a partition in two open closed subsets. Then there exist unique idempotents u, v ϵ A such that ϕ (u) = 1, ϕ (v) = 0 ∀ ϕ ϵ U, ϕ (u) = 0 ϕ (v) = 1 ∀ ϕ ϵ V . Suppose that IK is algebraically closed. If an element x ϵ A has an empty annulus r < |ξ − a| < s in its spectrum sp(x), then there exist unique idempotents u, v such that ϕ (u) = 1; ϕ (v) = 0 whenever ϕ (x − a) ≤ r and ϕ (u) = 0; ϕ (v) = 1 whenever ϕ (x − a) ≥ s. |
author |
Escassut,Alain |
author_facet |
Escassut,Alain |
author_sort |
Escassut,Alain |
title |
Idempotents in an ultrametric Banach algebra |
title_short |
Idempotents in an ultrametric Banach algebra |
title_full |
Idempotents in an ultrametric Banach algebra |
title_fullStr |
Idempotents in an ultrametric Banach algebra |
title_full_unstemmed |
Idempotents in an ultrametric Banach algebra |
title_sort |
idempotents in an ultrametric banach algebra |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000100161 |
work_keys_str_mv |
AT escassutalain idempotentsinanultrametricbanachalgebra |
_version_ |
1714206810320142336 |