Approximate solution of Abel integral equation in Daubechies wavelet basis
ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the s...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0719-06462021000200245 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0719-064620210002002452021-08-18Approximate solution of Abel integral equation in Daubechies wavelet basisMouley,JyotirmoyPanja,M. M.Mandal,B. N. Abel integral equation Daubechies scale function Daubechies wavelet Gauss-Daubechies quadrature rule ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.2 20212021-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245en10.4067/S0719-06462021000200245 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Abel integral equation Daubechies scale function Daubechies wavelet Gauss-Daubechies quadrature rule |
spellingShingle |
Abel integral equation Daubechies scale function Daubechies wavelet Gauss-Daubechies quadrature rule Mouley,Jyotirmoy Panja,M. M. Mandal,B. N. Approximate solution of Abel integral equation in Daubechies wavelet basis |
description |
ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution. |
author |
Mouley,Jyotirmoy Panja,M. M. Mandal,B. N. |
author_facet |
Mouley,Jyotirmoy Panja,M. M. Mandal,B. N. |
author_sort |
Mouley,Jyotirmoy |
title |
Approximate solution of Abel integral equation in Daubechies wavelet basis |
title_short |
Approximate solution of Abel integral equation in Daubechies wavelet basis |
title_full |
Approximate solution of Abel integral equation in Daubechies wavelet basis |
title_fullStr |
Approximate solution of Abel integral equation in Daubechies wavelet basis |
title_full_unstemmed |
Approximate solution of Abel integral equation in Daubechies wavelet basis |
title_sort |
approximate solution of abel integral equation in daubechies wavelet basis |
publisher |
Universidad de La Frontera. Departamento de Matemática y Estadística. |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245 |
work_keys_str_mv |
AT mouleyjyotirmoy approximatesolutionofabelintegralequationindaubechieswaveletbasis AT panjamm approximatesolutionofabelintegralequationindaubechieswaveletbasis AT mandalbn approximatesolutionofabelintegralequationindaubechieswaveletbasis |
_version_ |
1714206811336212480 |