Approximate solution of Abel integral equation in Daubechies wavelet basis

ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mouley,Jyotirmoy, Panja,M. M., Mandal,B. N.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0719-06462021000200245
record_format dspace
spelling oai:scielo:S0719-064620210002002452021-08-18Approximate solution of Abel integral equation in Daubechies wavelet basisMouley,JyotirmoyPanja,M. M.Mandal,B. N. Abel integral equation Daubechies scale function Daubechies wavelet Gauss-Daubechies quadrature rule ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution.info:eu-repo/semantics/openAccessUniversidad de La Frontera. Departamento de Matemática y Estadística.Cubo (Temuco) v.23 n.2 20212021-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245en10.4067/S0719-06462021000200245
institution Scielo Chile
collection Scielo Chile
language English
topic Abel integral equation
Daubechies scale function
Daubechies wavelet
Gauss-Daubechies quadrature rule
spellingShingle Abel integral equation
Daubechies scale function
Daubechies wavelet
Gauss-Daubechies quadrature rule
Mouley,Jyotirmoy
Panja,M. M.
Mandal,B. N.
Approximate solution of Abel integral equation in Daubechies wavelet basis
description ABSTRACT This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution.
author Mouley,Jyotirmoy
Panja,M. M.
Mandal,B. N.
author_facet Mouley,Jyotirmoy
Panja,M. M.
Mandal,B. N.
author_sort Mouley,Jyotirmoy
title Approximate solution of Abel integral equation in Daubechies wavelet basis
title_short Approximate solution of Abel integral equation in Daubechies wavelet basis
title_full Approximate solution of Abel integral equation in Daubechies wavelet basis
title_fullStr Approximate solution of Abel integral equation in Daubechies wavelet basis
title_full_unstemmed Approximate solution of Abel integral equation in Daubechies wavelet basis
title_sort approximate solution of abel integral equation in daubechies wavelet basis
publisher Universidad de La Frontera. Departamento de Matemática y Estadística.
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200245
work_keys_str_mv AT mouleyjyotirmoy approximatesolutionofabelintegralequationindaubechieswaveletbasis
AT panjamm approximatesolutionofabelintegralequationindaubechieswaveletbasis
AT mandalbn approximatesolutionofabelintegralequationindaubechieswaveletbasis
_version_ 1714206811336212480