Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
ABSTRACT In this paper we de_ne the subclass 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) of the class Σ of bi-univalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points, related to shell-...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de La Frontera. Departamento de Matemática y Estadística.
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200299 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | ABSTRACT In this paper we de_ne the subclass 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) of the class Σ of bi-univalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients |a2| and |a3| for functions f ∈ 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)). Further we determine the Fekete-Szegö result for the function class 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) and for the special cases α = 0, α = 1 and τ = -0:618 we state corollaries improving the initial Taylor-Maclaurin coefficients |a2| and |a3| |
---|