Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves

ABSTRACT In this paper we de_ne the subclass 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) of the class Σ of bi-univalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points, related to shell-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Özlem Güney,H., Murugusundaramoorthy,G., Vijaya,K.
Lenguaje:English
Publicado: Universidad de La Frontera. Departamento de Matemática y Estadística. 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462021000200299
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT In this paper we de_ne the subclass 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) of the class Σ of bi-univalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients |a2| and |a3| for functions f ∈ 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)). Further we determine the Fekete-Szegö result for the function class 𝒫𝒮ℒλ 8, Σ(α,ࣤp(z)) and for the special cases α = 0, α = 1 and τ = -0:618 we state corollaries improving the initial Taylor-Maclaurin coefficients |a2| and |a3|