Effect of Bonding Strength on Electromigration Failure in Cu–Cu Bumps

In microelectronic packaging technology for three-dimensional integrated circuits (3D ICs), Cu-to-Cu direct bonding appears to be the solution to solve the problems of Joule heating and electromigration (EM) in solder microbumps under 10 <inline-formula><math xmlns="http://www.w3.org/1...

Full description

Saved in:
Bibliographic Details
Main Authors: Kai-Cheng Shie, Po-Ning Hsu, Yu-Jin Li, K. N. Tu, Chih Chen
Format: article
Language:EN
Published: MDPI AG 2021
Subjects:
T
Online Access:https://doaj.org/article/001536b276f041919c682d97487e8dc0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In microelectronic packaging technology for three-dimensional integrated circuits (3D ICs), Cu-to-Cu direct bonding appears to be the solution to solve the problems of Joule heating and electromigration (EM) in solder microbumps under 10 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></mrow></semantics></math></inline-formula> in diameter. However, EM will occur in Cu–Cu bumps when the current density is over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mn>6</mn></msup><mo> </mo><mi mathvariant="normal">A</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. The surface, grain boundary, and the interface between the Cu and TiW adhesion layer are the three major diffusion paths in EM tests, and which one may lead to early failure is of interest. This study showed that bonding strength affects the outcome. First, if the bonding strength is not strong enough to sustain the thermal mismatch of materials during EM tests, the bonding interface will fracture and lead to an open circuit of early failure. Second, if the bonding strength can sustain the bonding structure, voids will form at the passivation contact area between the Cu–Cu bump and redistribution layer (RDL) due to current crowding. When the void grows along the passivation interface and separates the Cu–Cu bump and RDL, an open circuit can occur, especially when the current density and temperature are severe. Third, under excellent bonding, when the voids at the contact area between the Cu–Cu bump and RDL do not merge together, the EM lifetime can be more than 5000 h.