Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing
Given the severity of the SARS-CoV-2 pandemic, a major challenge is to rapidly repurpose existing approved drugs for clinical interventions. Here, the authors identify robust druggable protein targets within a principled causal framework that makes use of multiple data modalities and integrates agin...
Enregistré dans:
Auteurs principaux: | Anastasiya Belyaeva, Louis Cammarata, Adityanarayanan Radhakrishnan, Chandler Squires, Karren Dai Yang, G. V. Shivashankar, Caroline Uhler |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0070bbeebfbc43a1a7a2f2bff257da7c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
par: Karren Dai Yang, et autres
Publié: (2021) -
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
par: Steve Rodriguez, et autres
Publié: (2021) -
A comprehensive SARS-CoV-2 genomic analysis identifies potential targets for drug repurposing.
par: Nithishwer Mouroug Anand, et autres
Publié: (2021) -
A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease.
par: Jeremy D Baker, et autres
Publié: (2021) -
Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example
par: Ali S. Imami, et autres
Publié: (2021)