CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>

Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in <i>Panax ginseng</i> and a long cul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Soo-Hwan Lim, Jong-In Baek, Byeong-Min Jeon, Jung-Woo Seo, Min-Sung Kim, Ji-Young Byun, Soo-Hoon Park, Su-Jin Kim, Ju-Young Lee, Jun-Hyoung Lee, Sun-Chang Kim
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/02730777a46045f6b9798ef23abf6b1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:02730777a46045f6b9798ef23abf6b1b
record_format dspace
spelling oai:doaj.org-article:02730777a46045f6b9798ef23abf6b1b2021-11-11T17:16:08ZCRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>10.3390/ijms2221118361422-00671661-6596https://doaj.org/article/02730777a46045f6b9798ef23abf6b1b2021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11836https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in <i>Panax ginseng</i> and a long cultivation time (4–6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in <i>Saccharomyces cerevisiae</i> and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in <i>S. cerevisiae</i>. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in <i>S. cerevisiae</i>. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in <i>S. cerevisiae</i>, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.Soo-Hwan LimJong-In BaekByeong-Min JeonJung-Woo SeoMin-Sung KimJi-Young ByunSoo-Hoon ParkSu-Jin KimJu-Young LeeJun-Hyoung LeeSun-Chang KimMDPI AGarticleCRISPR interferencelanosterolprotopanaxadioltriterpenesmetabolic engineeringginsenosidesBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11836, p 11836 (2021)
institution DOAJ
collection DOAJ
language EN
topic CRISPR interference
lanosterol
protopanaxadiol
triterpenes
metabolic engineering
ginsenosides
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle CRISPR interference
lanosterol
protopanaxadiol
triterpenes
metabolic engineering
ginsenosides
Biology (General)
QH301-705.5
Chemistry
QD1-999
Soo-Hwan Lim
Jong-In Baek
Byeong-Min Jeon
Jung-Woo Seo
Min-Sung Kim
Ji-Young Byun
Soo-Hoon Park
Su-Jin Kim
Ju-Young Lee
Jun-Hyoung Lee
Sun-Chang Kim
CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
description Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in <i>Panax ginseng</i> and a long cultivation time (4–6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in <i>Saccharomyces cerevisiae</i> and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in <i>S. cerevisiae</i>. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in <i>S. cerevisiae</i>. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in <i>S. cerevisiae</i>, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.
format article
author Soo-Hwan Lim
Jong-In Baek
Byeong-Min Jeon
Jung-Woo Seo
Min-Sung Kim
Ji-Young Byun
Soo-Hoon Park
Su-Jin Kim
Ju-Young Lee
Jun-Hyoung Lee
Sun-Chang Kim
author_facet Soo-Hwan Lim
Jong-In Baek
Byeong-Min Jeon
Jung-Woo Seo
Min-Sung Kim
Ji-Young Byun
Soo-Hoon Park
Su-Jin Kim
Ju-Young Lee
Jun-Hyoung Lee
Sun-Chang Kim
author_sort Soo-Hwan Lim
title CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
title_short CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
title_full CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
title_fullStr CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
title_full_unstemmed CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in <i>Saccharomyces cerevisiae</i>
title_sort crispri-guided metabolic flux engineering for enhanced protopanaxadiol production in <i>saccharomyces cerevisiae</i>
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/02730777a46045f6b9798ef23abf6b1b
work_keys_str_mv AT soohwanlim crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT jonginbaek crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT byeongminjeon crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT jungwooseo crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT minsungkim crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT jiyoungbyun crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT soohoonpark crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT sujinkim crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT juyounglee crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT junhyounglee crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
AT sunchangkim crispriguidedmetabolicfluxengineeringforenhancedprotopanaxadiolproductioninisaccharomycescerevisiaei
_version_ 1718432099947511808