Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above
Global Bayesian optimization (GBO) is a derivative-free optimization method that is used widely in the tech-industry to optimize objective functions that are expensive to evaluate, numerically or otherwise. We discuss the use of GBO in ensemble data assimilation (DA), where the goal is to update the...
Guardado en:
Autores principales: | Spencer Lunderman, Matthias Morzfeld, Derek J. Posselt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/028de1b4d61b4d8c8fb124ca91f85a41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Eigenvector-spatial localisation
por: Travis Harty, et al.
Publicado: (2021) -
An anisotropic formulation of the parametric Kalman filter assimilation
por: Olivier Pannekoucke
Publicado: (2021) -
Adaptive Localization for Satellite Radiance Observations in an Ensemble Kalman Filter
por: Lili Lei, et al.
Publicado: (2020) -
Some quantitative characteristics of error covariance for Kalman filters
por: Wei Kang, et al.
Publicado: (2021) -
An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation
por: Xiang Xing, et al.
Publicado: (2021)