Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above
Global Bayesian optimization (GBO) is a derivative-free optimization method that is used widely in the tech-industry to optimize objective functions that are expensive to evaluate, numerically or otherwise. We discuss the use of GBO in ensemble data assimilation (DA), where the goal is to update the...
Enregistré dans:
Auteurs principaux: | Spencer Lunderman, Matthias Morzfeld, Derek J. Posselt |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Taylor & Francis Group
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/028de1b4d61b4d8c8fb124ca91f85a41 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Eigenvector-spatial localisation
par: Travis Harty, et autres
Publié: (2021) -
An anisotropic formulation of the parametric Kalman filter assimilation
par: Olivier Pannekoucke
Publié: (2021) -
Adaptive Localization for Satellite Radiance Observations in an Ensemble Kalman Filter
par: Lili Lei, et autres
Publié: (2020) -
Some quantitative characteristics of error covariance for Kalman filters
par: Wei Kang, et autres
Publié: (2021) -
An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation
par: Xiang Xing, et autres
Publié: (2021)