Electron cryo-tomography reveals the subcellular architecture of growing axons in human brain organoids

During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly acces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Patrick C Hoffmann, Stefano L Giandomenico, Iva Ganeva, Michael R Wozny, Magdalena Sutcliffe, Madeline A Lancaster, Wanda Kukulski
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/02bc299a719544eaa41e48038e4ecda2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.