Detection of 2-Hydroxyglutarate by 3.0-Tesla Magnetic Resonance Spectroscopy in Gliomas with Rare IDH Mutations: Making Sense of “False-Positive” Cases
We have previously published a study on the reliable detection of 2-hydroxyglutarate (2HG) in lower-grade gliomas by magnetic resonance spectroscopy (MRS). In this short article, we re-evaluated five glioma cases originally assessed as isocitrate dehydrogenase (IDH) wildtype, which showed a high acc...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/02c8ce6392cb47eda48b441c0572e5df |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have previously published a study on the reliable detection of 2-hydroxyglutarate (2HG) in lower-grade gliomas by magnetic resonance spectroscopy (MRS). In this short article, we re-evaluated five glioma cases originally assessed as isocitrate dehydrogenase (IDH) wildtype, which showed a high accumulation of 2HG, and were thought to be false-positives. A new primer was used for the detection of <i>IDH2</i> mutation by Sanger sequencing. Adequate tissue for DNA analysis was available in 4 out of 5 cases. We found rare <i>IDH2</i> mutations in two cases, with <i>IDH2</i> R172W mutation in one case and <i>IDH2</i> R172K mutation in another case. Both cases had very small mutant peaks, suggesting that the tumor volume was low in the tumor samples. Thus, the specificity of MRS for detecting IDH1/2 mutations was higher (81.3%) than that originally reported (72.2%). The detection of 2HG by MRS can aid in the diagnosis of rare, non-IDH1-R132H <i>IDH1</i> and <i>IDH2</i> mutations in gliomas. |
---|