Test of understanding graphs in kinematics: Item objectives confirmed by clustering eye movement transitions

The test of understanding graphs in kinematics (TUG-K) has widely been used to assess students’ understanding of this subject. The TUG-K poses different objectives to the test takers such as (1) the selection of a graph from a textual description, (2) the selection of corresponding graphs, and (3) t...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Klein, S. Becker, S. Küchemann, J. Kuhn
Format: article
Language:EN
Published: American Physical Society 2021
Subjects:
Online Access:https://doaj.org/article/032a213d51394c5f8f1714ed3502fd86
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The test of understanding graphs in kinematics (TUG-K) has widely been used to assess students’ understanding of this subject. The TUG-K poses different objectives to the test takers such as (1) the selection of a graph from a textual description, (2) the selection of corresponding graphs, and (3) the selection of a textual description from a graph. Whether test takers follow these task requirements is usually inferred from evaluating the test scores as correct or incorrect, yet the process of how students actually interact with the different tasks remains unknown. Recent studies have shown that eye tracking can provide rich insight into student’s interaction with multiple-choice tasks. In the current work, we analyzed the eye movement patterns of N=115 high school students while solving the TUG-K. Each question was divided into a question area (Q) and an option area (O), then gaze transitions between Q and O and between different options were calculated. A cluster analysis using the transition metrics revealed three item groups, containing the aforementioned objectives of the items. The clusters remain stable for different subsamples of our dataset, for instance, considering only the correct or only the incorrect responses, or considering high- or low-confidence responses. We conclude that eye movements can reflect task demands on a procedural level well beyond the classical methods of evaluating test scores, eventually making eye tracking an additional method for item analysis that can be utilized to confirm or explore test and item structures.