A Temporal Neural Network Model for Probabilistic Multi-Period Forecasting of Distributed Energy Resources

Probabilistic forecasts of electrical loads and photovoltaic generation provide a family of methods able to incorporate uncertainty estimations in predictions. This paper aims to extend the literature on these methods by proposing a novel deep-learning model based on a mixture of convolutional neura...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Markus Loschenbrand
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/0373dab8d2c44356b1f51940e950d2ed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!