A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis

Abstract The application of deep learning algorithms for medical diagnosis in the real world faces challenges with transparency and interpretability. The labeling of large-scale samples leads to costly investment in developing deep learning algorithms. The application of human prior knowledge is an...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yongli Xu, Man Hu, Hanruo Liu, Hao Yang, Huaizhou Wang, Shuai Lu, Tianwei Liang, Xiaoxing Li, Mai Xu, Liu Li, Huiqi Li, Xin Ji, Zhijun Wang, Li Li, Robert N. Weinreb, Ningli Wang
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/03dcc04288584655bc8b9a6fe5671d8e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!