A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
Abstract The application of deep learning algorithms for medical diagnosis in the real world faces challenges with transparency and interpretability. The labeling of large-scale samples leads to costly investment in developing deep learning algorithms. The application of human prior knowledge is an...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/03dcc04288584655bc8b9a6fe5671d8e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|